


Spring Web Essentials
Building modern web services with Spring Boot

Jeffrey Allen Anderson

This book is for sale at http://leanpub.com/springwebessentials

This version was published on 2020-03-08

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2020 Jeffrey Allen Anderson

http://leanpub.com/springwebessentials
http://leanpub.com/
http://leanpub.com/manifesto


Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Who should read this book? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
What you will need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
About the author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Part One: Web Services For The Modern Age . . . . . . . 4

Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Create a new Maven project using Spring Initializr . . . . . . . . . . . . . . . . . . . . . . . . 5
Extract and open the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Make sure you can run your new application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
A closer look at the Maven Project Object Model (POM) file . . . . . . . . . . . . . . . . . . 8
A closer look at the main Java application class . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A closer look at the JUnit test class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Git committed! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Some context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Representational State Transfer (REST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
More about HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Our first application programming interface (API) . . . . . . . . . . . . . . . . . . . . . . . . . 20
The OpenAPI Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Create a new blog posting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Return a Location header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Adding an object model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Updated OpenAPI specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Create a blog post domain class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Incorporate the BlogPost class into our API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



CONTENTS

Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Adding a database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Add the project dependencies: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Convert BlogPost into an @Entity: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Create a Spring JPA repository: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Using our new JPA repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Have the controller automatically set the datePosted . . . . . . . . . . . . . . . . . . . . . . . 39
Test your changes with Postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Testing with mocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Create a second BlogPostControllerTests class . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Configure our new class for mocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Using our mock bean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Property validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Add bean validation constraints to BlogPost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Test that validation errors result in a bad request status . . . . . . . . . . . . . . . . . . . . . 41
Update the controller to run validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Testing with Postman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Customizing the validation errors response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Putting the RUD in CRUD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Test utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Get all articles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Get an article by ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Update an existing article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Delete an existing article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Accomplishments: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



Introduction
Foreword

My first website was online help documentation for the policy administration software used by
our call center associates. It was the mid-1990’s, and our old help system was clunky. Authoring
documents was a multistep process and, with the release of each new version, we had to install it
on hundreds of workstations.

By contrast, our newHypertext Markup Language (HTML) version was easy to maintain, and, being
served from a central location, could be changed anytime. Thanks to the cross-platform nature of
the Mosaic web browser¹, the content looked the same on Windows, Unix, Mac, and Solaris.

Our magical new HTML user guide was well received, and it wasn’t long before the call center
manager asked if we could use this technology to allow customers to view account information and
make changes over the internet rather than by phone.

Technology choices were limited back then. Our first user-facing website, written in C++ with
dynamic content generated through the Common Gateway Interface (CGI) of the webserver, got the
job done. It wasn’t speedy, and, with our code running directly in the web server, straightforward
coding errors could bring down the entire website.

When Java emerged onto the scene, it brought with it the ability to write code once and run it
anywhere thanks to the Java Virtual Machine. It also ushered in the era of the application server,
creating an actual “three-tier” architecture with distinct layers for presentation, application, and
data. Our website performance was much better because we could horizontally scale the web and
application tiers independently.

As our website grew in size and complexity, it became clear we needed better ways to manage
quality through automated testing. Spring’s inversion of control container was a novel approach
to wiring up application dependencies in a way that made it easy to test how objects respond to
different external behavior, both expected and unexpected.

Spring became a key enabler of automated testing supporting continuous integration (CI). Over time
it grew into a complete framework aimed at creating simple, reusable software built on standard
patterns that solved universal problems. It’s now a set of over twenty projects constructed on the
inversion of control foundational core.

My goal for this book is to prepare you to work on both legacy and modern websites built on Spring
using a test-driven approach. The first part covers building application programming interfaces
(APIs) that power the “modern” web. In the second part, we build a more traditional web application.

¹https://en.wikipedia.org/wiki/Mosaic_(web_browser)

https://en.wikipedia.org/wiki/Mosaic_(web_browser)
https://en.wikipedia.org/wiki/Mosaic_(web_browser)


Introduction 2

Spring has many more projects and capabilities than we can explore in one book. Still, I hope this is
an excellent introduction and gives you the confidence to be successful web application developers
ready to hit the ground running.

Who should read this book?

If you want to learn how to develop modern web applications with Spring, this book is for you. Part
one covers using Spring to power secure, industrial-grade web services ready to support modern
web applications built with Hypertext Markup Language (HTML) and JavaScript such as Angular,
React, and Vue. In part two, we develop a more traditional server-side HTML web application.

Why this book and not another Spring book on the market?

The first version of Spring came out in 2003 when Java lacked many of the capabilities that make it
a great language today, like generics, annotations, and variable arguments. As the language brought
more natural ways of doing things, Spring improved to take advantage of them. Strong backward
compatibility is one of the five major design philosophies² of Spring, but it also means there are new,
older, and much older ways of doing things. Documenting all of them makes for thick books.

Second, older books don’t cover the magic that is Spring Boot³, which significantly simplifies
configuring and running Spring applications. It’s no longer an arduous task to get a Spring
application up and running, so why should you learn how to do lots of unnecessary work?

Finally, newer books cover Spring boot but often lack the level of detail needed to deploy real
applications to production, including unit tests, bean validation, and security. This book presents
a complete example leaving you ready to work on industrial-grade Spring applications.

As a teacher, my reading assignments often had a longer list of what to skip than what to read.
I wrote this book to use in the classroom with a focus on current best practices covering what
students need to know. We follow a test-driven, standards-based approach. The text is full of links
to documentation and reference information for each new concept presented.

What you will need

First, a Mac, Windows, or Linux computer with Java 8 or higher installed. Recently Oracle
changed the licensing for Java. For personal use, it’s still free to use, but if you plan to use your
code in production, consider using an OpenJDK⁴ distribution such as the Spring recommended
AdoptOpenJDK⁵. If you are running Linux, OpenJDK is available through your distribution’s
package manager.

Second, an Integrated Development Environment (IDE). For this book, I will be using IntelliJ IDEA⁶
²https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/overview.html#overview-philosophy
³https://spring.io/projects/spring-boot
⁴https://en.wikipedia.org/wiki/OpenJDK
⁵https://adoptopenjdk.net/
⁶https://www.jetbrains.com/idea/

https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/overview.html#overview-philosophy
https://spring.io/projects/spring-boot
https://en.wikipedia.org/wiki/OpenJDK
https://adoptopenjdk.net/
https://www.jetbrains.com/idea/
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/overview.html#overview-philosophy
https://spring.io/projects/spring-boot
https://en.wikipedia.org/wiki/OpenJDK
https://adoptopenjdk.net/
https://www.jetbrains.com/idea/


Introduction 3

from JetBrains. I pay for the Ultimate edition because I want to support the great work they do, but
the Community edition is free and will work for everything we do in this book.

Another worthy IDE alternative is Visual Studio Code⁷, frequently referred to as “VS Code.” It’s
brought to you by Microsoft and is also free to download and use.

Third, a web services testing tool like Postman⁸. It’s free to use, and creating a Postman account is
optional.

Finally, you will need a solid working knowledge of Java. I take the time to explain how Spring
works and provide lots of code, so don’t worry too much if you are still learning.

About the author

For as long as he can remember, Jeff has been fascinated by gadgets. His all-time favorite Christmas
gift was a Science Fair 100 in 1 Kit, because, with each project he tried, he learned more about how
electronic components work together to make something useful.

The knowledge he gained building “space-age” electronics in the 1970s set him on his path as a
lifelong author, student, teacher, enterprise IT architect, software developer, and data geek. He is an
Amazon Web Services (AWS) Academy Accredited Instructor and holds three AWS certifications:
Cloud Practitioner, Solutions Architect Associate, and Security Specialty. When he logs out, he loves
motorcycle riding, camping, traveling, and racing.

His career spans four decades in many roles, including developer, lead developer, application
architect, infrastructure architect, data architect, and, most recently, educator. In the early days,
his favorite programming language was Pascal and, most recently, Go⁹. He will always have a soft
spot in his heart for Java. He wrote his first Java program in 1997 and spent the next fifteen years
using it to develop websites, web services, and other software for a Fortune 100 company. Now, he
teaches Java for Columbus State Community College.

Acknowledgements

Cover art photo by Vural Yavas from Pexels

⁷https://code.visualstudio.com/
⁸https://www.postman.com/
⁹https://golang.org/

https://code.visualstudio.com/
https://www.postman.com/
https://golang.org/
https://code.visualstudio.com/
https://www.postman.com/
https://golang.org/


Part One: Web Services For The
Modern Age

In part one, we will develop a set of Representational State Transfer (REST) web services that power
the fictitious Spankin’ Fresh Farmers Market food blog. You can see the Application Programming
Interface (API) specification for what we are building on SwaggerHub¹⁰, and we will secure them
using a standards based approach¹¹.

¹⁰https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/
¹¹https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/

https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/
https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/
https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/
https://www.okta.com/identity-101/whats-the-difference-between-oauth-openid-connect-and-saml/


Getting started
Create a new Maven project using Spring Initializr

Spring Initializr web page

1. Open your browser and go to https://start.spring.io/¹²

¹²https://start.spring.io/

https://start.spring.io/
https://start.spring.io/


Getting started 6

2. Keep the defaults of “Maven Project” for the project, “Java” for language, and the automatically
chosen Spring Boot version.

3. Under Project Metadata, enter:

• com.spankinfresh for the “Group” — note: if you are not familiar with Apache Maven¹³, in
a production setting, this should globally identify your organization in a Maven repository.
Since we won’t be publishing our app to one, what you enter here is less important. Use any
valid domain name you own or use com.spankinfresh so your code stays consistent with the
content in this book.

• blog for the “Artifact” — note: the value should uniquely identify your app within the group.

4. In the dependencies search field, enter “web” then click on “SpringWeb” from the search results
that appear, making sure it moves under “Selected dependencies.”

5. Finally, choose “Generate,” and Spring Initializr will download a blog.zip file with your starter
project.

Extract and open the project

1. Unzip the file you downloaded into a new folder under your development directory.
2. Start IntelliJ.
3. Close any projects that come up until you see the “Welcome” screen
4. From the welcome screen, choose “Open” then navigate to the top-level directory of the

extracted blog.zip archive from step 1, above.

It may take a while for IntelliJ to import the project and download all dependencies, so patience is
a virtue. Within a few minutes, your workspace should look like this:

¹³http://maven.apache.org/

http://maven.apache.org/
http://maven.apache.org/


Getting started 7

IntelliJ IDEA workspace after opening our new project

NOTE: You may see the message, “Maven projects need to be imported” at the bottom-right portion
of the workspace. If so, choose “Enable Auto-Import”. Doing so means each time you change the
pom.xml file, Maven will automatically download new dependencies.

Import Maven projects message

Make sure you can run your new application

When you created your project, Spring Initializr included everything you need to run JUnit
tests. From the project pane, expand the directories under blog > src > test > java/-

com.spankinfresh.blog



Getting started 8

Running your first test

Right-click on BlogApplicationTests then choose Run BlogApplicationTests. If everything is
working correctly, you should see green check marks next to “contextLoads()” in the run tests panel

Congratulations! In just a few minutes, you built a Spring application.

A closer look at the Maven Project Object Model (POM)
file

Since we chose amaven project, the Spring Initializr created aMaven POM file¹⁴ for us. The contents,
shown below, tell Maven about our dependencies and how to build our project.

¹⁴http://maven.apache.org/pom.html

http://maven.apache.org/pom.html
http://maven.apache.org/pom.html


Getting started 9

1 <?xml version="1.0" encoding="UTF-8"?>

2 <project xmlns="http://maven.apache.org/POM/4.0.0"

3 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

4 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

5 https://maven.apache.org/xsd/maven-4.0.0.xsd">

6 <modelVersion>4.0.0</modelVersion>

7 <parent>

8 <groupId>org.springframework.boot</groupId>

9 <artifactId>spring-boot-starter-parent</artifactId>

10 <version>2.2.4.RELEASE</version>

11 <relativePath/> <!-- lookup parent from repository -->

12 </parent>

13 <groupId>com.spankinfresh</groupId>

14 <artifactId>blog</artifactId>

15 <version>0.0.1-SNAPSHOT</version>

16 <name>blog</name>

17 <description>Demo project for Spring Boot</description>

18

19 <properties>

20 <java.version>8</java.version>

21 </properties>

22

23 <dependencies>

24 <dependency>

25 <groupId>org.springframework.boot</groupId>

26 <artifactId>spring-boot-starter-web</artifactId>

27 </dependency>

28

29 <dependency>

30 <groupId>org.springframework.boot</groupId>

31 <artifactId>spring-boot-starter-test</artifactId>

32 <scope>test</scope>

33 <exclusions>

34 <exclusion>

35 <groupId>org.junit.vintage</groupId>

36 <artifactId>junit-vintage-engine</artifactId>

37 </exclusion>

38 </exclusions>

39 </dependency>

40 </dependencies>

41

42 <build>

43 <plugins>



Getting started 10

44 <plugin>

45 <groupId>org.springframework.boot</groupId>

46 <artifactId>spring-boot-maven-plugin</artifactId>

47 </plugin>

48 </plugins>

49 </build>

50

51 </project>

Looking in the file, you will see the entries we made in the Spring Initializr screen for “group”
and “artifact” included just after the <parent>...</parent> section. The version defaults to
0.0.1-SNAPSHOT. The combination of these three is known as theMaven coordinates¹⁵, which denote
a specific version of the project. The name¹⁶ defaults to the artifact id, but you can change it to
something meaningful like a code or marketing name for the application.

Spring boot provides many project starters¹⁷ which take advantage of the inheritance¹⁸ feature
of Maven, to provide a base configuration and declare a minimum set of dependencies. The
<parent>...</parent> section of our POM points to the spring-boot-starter-parent artifact from
the org.springframework.boot group. The version will correspond to the value selected on the
Spring Initializr start page.

The properties¹⁹ section allows us to define key-value pairs and access the values by name anywhere
in the file. In our case, we have a java.version property which we can reference as ${java.version}
wherever we would otherwise supply the Java version.

As you recall, we chose “Spring Web” as the only dependency on the Spring Initializr start page. It’s
listed first in the dependencies²⁰ section and provides everything we need to build web applications,
including REST web services using Spring model-view-controller (MVC). It uses Apache Tomcat²¹
as the default embedded container. Before Spring Boot, we had to manually install and configure
Tomcat before we could run our web applications.

Because every well-written application has lots of tests, spring-boot-starter-test is automatically
included with a “test” scope, meaning it’s dependencies will be added when building and running
unit tests but not when running the application. This starter includes several dependencies for testing
Spring Boot applications with libraries, including JUnit²², Hamcrest²³ andMockito²⁴. The exclusion²⁵
for junit-vintage-engine tells Maven we only plan to write JUnit 5 tests. If we wanted to write
JUnit 4 tests, we would remove that exclusion. See testing²⁶ for more.

¹⁵http://maven.apache.org/pom.html#Maven_Coordinates
¹⁶http://maven.apache.org/pom.html#More_Project_Information
¹⁷https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-starter
¹⁸http://maven.apache.org/pom.html#Inheritance
¹⁹http://maven.apache.org/pom.html#Properties
²⁰http://maven.apache.org/pom.html#Dependencies
²¹https://tomcat.apache.org/
²²https://junit.org/junit5/
²³http://hamcrest.org/JavaHamcrest/
²⁴https://site.mockito.org/
²⁵http://maven.apache.org/pom.html#Exclusions
²⁶https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing

http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#More_Project_Information
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-starter
http://maven.apache.org/pom.html#Inheritance
http://maven.apache.org/pom.html#Properties
http://maven.apache.org/pom.html#Dependencies
https://tomcat.apache.org/
https://junit.org/junit5/
http://hamcrest.org/JavaHamcrest/
https://site.mockito.org/
http://maven.apache.org/pom.html#Exclusions
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing
http://maven.apache.org/pom.html#Maven_Coordinates
http://maven.apache.org/pom.html#More_Project_Information
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-starter
http://maven.apache.org/pom.html#Inheritance
http://maven.apache.org/pom.html#Properties
http://maven.apache.org/pom.html#Dependencies
https://tomcat.apache.org/
https://junit.org/junit5/
http://hamcrest.org/JavaHamcrest/
https://site.mockito.org/
http://maven.apache.org/pom.html#Exclusions
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing


Getting started 11

Finally, the plugins²⁷ section of the POM file has the Spring Boot Maven plugin²⁸. When we build
our project, Maven runs it to package our project as an executable Java Archive (JAR) file.

You may have noticed Spring Initializr also provided mvnw and mvnw.cmd in the top-level directory
of our project. The former is a shell script for use on Linux, Unix, or Mac. The latter, a batch file
for Windows. If you are using IntelliJ, you won’t need them but, they come in handy if you want
to package your project from the command line. Don’t worry if you have not installed Maven. The
scripts will download and install it for you.

A closer look at the main Java application class

Spring Initializr created two Java classes for us. The main application and a unit test. Let’s look at
the main application class first.

1 package com.spankinfresh.blog;

2

3 import org.springframework.boot.SpringApplication;

4 import org.springframework.boot.autoconfigure.SpringBootApplication;

5

6 @SpringBootApplication

7 public class BlogApplication {

8

9 public static void main(String[] args) {

10 SpringApplication.run(BlogApplication.class, args);

11 }

12

13 }

The executable JAR file Maven produces automatically calls the main method in the class above,
which, in turn, calls SpringApplication.run²⁹ to bootstrap and launch the Spring application.
Decorating a class with @SpringBootApplication³⁰ is a more succinct way of decorating it with
@Configuration³¹, @EnableAutoConfiguration³², and @ComponentScan³³.

@ComponentScan tells Spring to scan the base package, com.spankinfresh.blog in our case, and all
sub-packages for classes annotated with @Configuration which it uses to configure the application.
Component scanning works with annotation-based container configuration³⁴ to simplify and

²⁷http://maven.apache.org/pom.html#Plugins
²⁸https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-maven-plugin
²⁹https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringApplication.html#run-java.lang.Class-

java.lang.String...-
³⁰https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html
³¹https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
³²https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html
³³https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html
³⁴https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-annotation-config

http://maven.apache.org/pom.html#Plugins
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-maven-plugin
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringApplication.html#run-java.lang.Class-java.lang.String...-
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-annotation-config
http://maven.apache.org/pom.html#Plugins
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/using-spring-boot.html#using-boot-maven-plugin
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringApplication.html#run-java.lang.Class-java.lang.String...-
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/SpringApplication.html#run-java.lang.Class-java.lang.String...-
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/SpringBootApplication.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/Configuration.html
https://docs.spring.io/spring-boot/docs/current/api/org/springframework/boot/autoconfigure/EnableAutoConfiguration.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/context/annotation/ComponentScan.html
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-annotation-config


Getting started 12

automate the process. It also follows the DRY (don’t repeat yourself) principle, which is a problem
with the original XML-based container configuration³⁵.

@EnableAutoConfiguration takes it a step further by automatically applying an additional config-
uration based on what it finds in the classpath. Even though we did not provide any for a web
application, since we included spring-boot-starter-web in our POM file, Spring assumes we want
a web server and automatically configures it for us. This powerful feature is one of the reasons we
have a fully functioning web application with one annotation and just a few lines of code.

A closer look at the JUnit test class

1 package com.spankinfresh.blog;

2

3 import org.junit.jupiter.api.Test;

4 import org.springframework.boot.test.context.SpringBootTest;

5

6 @SpringBootTest

7 class BlogApplicationTests {

8

9 @Test

10 void contextLoads() {

11 }

12

13 }

Our application doesn’t yet do anything, but we want to make sure Spring can run it. By decorating
a test with @SpringBootTest, Spring will search for a class annotated with @SpringBootApplication

and use it to configure the application.

The test method doesn’t explicitly test anything, but its mere presence causes Spring to load the
application. The test will pass if everything is working or throw an error if not, causing the test to
fail.

Git committed!

More times than I can count, I havemessed something up and had no idea why it wasn’t working. It’s
tremendously helpful to be able to revert to a known working state or simply compare my changes
with my last commit. For this reason, I highly recommend using version control and committing
often.

³⁵https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-factory-metadata

https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-factory-metadata
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-factory-metadata


Getting started 13

Create a local Git repository:

1. From the IntelliJ menu, choose VCS > Import into Version Control > Create Git Repository.
2. Choose the automatically selected default of your project’s top directory for your local repo.

Check-in your initial commit

1. Add a line with .mvn at the bottom of your .gitignore file.
2. Choose VCS > Commit.
3. Check the box to the left of “Unversioned Files.”
4. Enter “Initial commit” into the “Commit Message” box
5. Press “Commit”

Create a private repo for your project on GitHub

While it might not happen often, hard drives crash, and operating systems become unbootable. I
push my changes to GitHub at least daily, so I have a backup of my work.

1. Create a public or private GitHub repository using these instructions³⁶.
2. Open a terminal window and navigate to your top-level project directory.
3. Copy and paste the “…or push an existing repository from the command line” commands shown

on your new repository code tab into the terminal window.

After the push completes, refresh the GitHub browser window and make sure you see something
like the view below:

³⁶https://help.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-new-repository

https://help.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-new-repository
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-new-repository


Getting started 14

Github view of our new project

Accomplishments

I like to end each chapter with a summary of what we have accomplished. In this chapter, we used
Spring Initializr to configure a minimal Spring Boot web application. After reviewing the application
configuration and structure, we ran a unit test to make sure the application will run correctly.



Some context
Before we jump right into developing web services, it’s good to establish some context. This chapter
presents essential concepts that will come in handy as we start writing code.

Web services

In general, a web service is a service offered by a provider and is accessible to clients through the
world wide web. The old school term “world wide web” is synonymous with the internet, but web
services also run on private networks, commonly referred to as intranets.

Initially, services communicated through context-specific protocols such as the File Transfer Protocol
(FTP)³⁷, formalized in 1971, and SimpleMail Transfer Protocol (SMTP)³⁸, formalized in 1981. The first
version of the Hypertext Transfer Protocol (HTTP), 0.9³⁹, was introduced in 1991. It was rudimentary
with only had one method, GET. In 1995, the Internet Engineering Task Force (IETF) issued Request
For Comments (RFC) 1945⁴⁰, which defines a complete version 1.0 of the HTTP protocol.

I wrote my first web services using Common Object Request Broker (CORBA)⁴¹. It allowed us to
scale processing to other servers horizontally, but, being designed for programming language and
operating system independence, was complex. It came with an interface definition language used to
generate platform-specific code for the client and server. Even worse, it used yet another proprietary
protocol known as the general Inter-ORB protocol⁴².

As my boss likes to say, the next turn of the crank was Simple Object Access Protocol (SOAP)⁴³. Like
CORBA, it is operating system and language agnostic. Messages between components are encoded
in Extensible Markup Language (XML)⁴⁴ and exchanged via SMTP or, more commonly, HTTP.

It was a distinct improvement on CORBA, but still complicated to use. The verbose nature of XML
makes it slow to parse. We use tools to convert Web Services Description Language (WSDL)⁴⁵ into
Java. Changes in the service often require regeneration of the client and server code. Indeed it’s lots
of ceremony with a dash of smoke and mirrors thrown in for good measure.

Inmany respects, SOAP services ushered in aweb service golden age. Vendors like IBMwere eager to
extol the virtues of a service-oriented architecture, also known as “SOA,” where services, defined by

³⁷https://tools.ietf.org/html/rfc114
³⁸https://tools.ietf.org/html/rfc788
³⁹https://www.w3.org/Protocols/HTTP/AsImplemented.html
⁴⁰https://tools.ietf.org/html/rfc1945
⁴¹https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
⁴²https://en.wikipedia.org/wiki/General_Inter-ORB_Protocol
⁴³https://en.wikipedia.org/wiki/SOAP
⁴⁴https://en.wikipedia.org/wiki/XML
⁴⁵https://en.wikipedia.org/wiki/Web_Services_Description_Language

https://tools.ietf.org/html/rfc114
https://tools.ietf.org/html/rfc114
https://tools.ietf.org/html/rfc788
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://tools.ietf.org/html/rfc1945
https://tools.ietf.org/html/rfc1945
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/General_Inter-ORB_Protocol
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://tools.ietf.org/html/rfc114
https://tools.ietf.org/html/rfc788
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://tools.ietf.org/html/rfc1945
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/General_Inter-ORB_Protocol
https://en.wikipedia.org/wiki/SOAP
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Web_Services_Description_Language


Some context 16

WSDL could advertise and interact on an enterprise service bus (ESB)⁴⁶. Tomany of us, it seemed like
marketing hype to sell proprietary products with fat maintenance contracts. Still, it did get everyone
thinking about how systems could collaborate in a decoupled fashion.

Representational State Transfer (REST)

While everyone was busy rewriting their CORBA services using SOAP, Roy Fielding was com-
pleting his Doctoral Dissertation, Architectural Styles and the Design of Network-based Software
Architectures⁴⁷. This paper, published in 2000, was the pivotal moment when REST was born.

Unlike its predecessors, it’s not a standard issued by a governing body. Instead, it’s an architectural
style that describes how to build web services with messages in any language, format, or encoding,
exchanged using standard HTTP.

The key abstraction of information in REST is a resource. Any information that can be
named can be a resource: a document or image, a temporal service (e.g. “today’s weather
in Los Angeles”), a collection of other resources, a non-virtual object (e.g., a person), and
so on. In other words, any concept that might be the target of an author’s hypertext
reference must fit within the definition of a resource. A resource is a conceptual mapping
to a set of entities, not the entity that corresponds to the mapping at any particular point
in time.⁴⁸

Resources can be represented in a variety of ways:

REST components perform actions on a resource by using a representation to capture the
current or intended state of that resource and transferring that representation between
components. A representation is a sequence of bytes, plus representation metadata to
describe those bytes. Other commonly used but less precise names for a representation
include: document, file, and HTTP message entity, instance, or variant.⁴⁹

Resources are identified by a Uniform Resource Identifier (URI), which is a generalization of the
more familiar term Uniform Resource Locator (URL). Wikipedia has an excellent overview of the
topic⁵⁰, and RFC 3986⁵¹ has the official specification.

Clients use HTTP request methods⁵² as verbs on what action to take. The server responds with an
HTTP status code⁵³ that gives the result of the request attempt.

⁴⁶https://www.ibm.com/cloud/learn/esb
⁴⁷https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
⁴⁸Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software Architectures. Doctoral dissertation, University

of California, Irvine, 2000, § 5.2.1.1 Resources and Resource Identifiers
⁴⁹Ibid, § 5.2.1.2 Representations
⁵⁰https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
⁵¹https://tools.ietf.org/html/rfc3986
⁵²https://tools.ietf.org/html/rfc7231#section-4
⁵³https://tools.ietf.org/html/rfc7231#section-6

https://www.ibm.com/cloud/learn/esb
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc7231#section-4
https://tools.ietf.org/html/rfc7231#section-6
https://www.ibm.com/cloud/learn/esb
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_2
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc7231#section-4
https://tools.ietf.org/html/rfc7231#section-6


Some context 17

REST uses media types⁵⁴ to denote the format of a resource representation. For example, the same
image can be represented in Portable Network Graphics (PNG) format and Joint Photographic
Experts Group (JPEG) format. Thanks to the early popularity of SOAP, XMLwas the original format
of choice for text, but, as JavaScript gained predominance in web applications, JavaScript Object
Notation (JSON) is now the most common standard textual representation.

Since a given resourcemay be represented in any number of ways, section 3.4⁵⁵ of RFC 7231 describes
how clients and servers agree on a mutually acceptable format, language, or encoding.

Another feature of REST is that all operations are stateless.

All REST interactions are stateless. That is, each request contains all of the information
necessary for a connector to understand the request, independent of any requests thatmay
have preceded it. This restriction accomplishes four functions: 1) it removes any need for
the connectors to retain application state between requests, thus reducing consumption
of physical resources and improving scalability; 2) it allows interactions to be processed
in parallel without requiring that the processing mechanism understand the interaction
semantics; 3) it allows an intermediary to view and understand a request in isolation,
which may be necessary when services are dynamically rearranged; and, 4) it forces all
of the information that might factor into the reusability of a cached response to be present
in each request.⁵⁶

Since REST uses HTTP for it’s the transport layer, it also allows for caching:

A cache is able to determine the cacheability of a response because the interface is generic
rather than specific to each resource. By default, the response to a retrieval request is
cacheable and the responses to other requests are non-cacheable. If some form of user
authentication is part of the request, or if the response indicates that it should not be
shared, then the response is only cacheable by a non-shared cache. A component can
override these defaults by including control data that marks the interaction as cacheable,
non-cacheable or cacheable for only a limited time.⁵⁷

More about HTTP

A full review of HTTP is outside the scope of this book but the main set of standards are listed below:

• RFC 7230⁵⁸: Message Syntax and Routing
• RFC 7231⁵⁹: Semantics and Content
⁵⁴https://tools.ietf.org/html/rfc6838
⁵⁵https://tools.ietf.org/html/rfc7231#section-3.4
⁵⁶Ibid, § 5.2.2 Connectors
⁵⁷Ibid, § 5.2.2 Connectors
⁵⁸https://tools.ietf.org/html/rfc7230
⁵⁹https://tools.ietf.org/html/rfc7231

https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7231#section-3.4
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7231#section-3.4
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_2
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_2
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231


Some context 18

• RFC 7232⁶⁰: Conditional Requests
• RFC 7233⁶¹: Range Requests
• RFC 7234⁶²: Caching
• RFC 7235⁶³: Authentication

Since REST uses HTTP as the transport layer, it’s especially important to read RFC 7231, Hypertext
Transfer Protocol (HTTP/1.1): Semantics and Content so you understand how to interact with
resources and properly handle various conditions and responses.

Common HTTP methods

While not an exhaustive list, the methods below are the most used:⁶⁴

Method Description Section
GET Transfer a current representation

of the target resource
4.3.1⁶⁵

HEAD Same as GET, but only transfer the
status line and header section

4.3.2⁶⁶

POST Perform resource-specific
processing on the request payload

4.3.3⁶⁷

PUT Replace all current representations
of the target resource with the
request payload

4.3.4⁶⁸

DELETE Remove all current
representations of the target
resource

4.3.5⁶⁹

OPTIONS Describe the communication
options for the target resource

4.3.7⁷⁰

Common HTTP status codes

The HTTP protocol defines many more status codes, but those listed below are some of the most
common:⁷¹

⁶⁰https://tools.ietf.org/html/rfc7232
⁶¹https://tools.ietf.org/html/rfc7233
⁶²https://tools.ietf.org/html/rfc7234
⁶³https://tools.ietf.org/html/rfc7235
⁶⁴RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content § 4.1. Overview
⁶⁵https://tools.ietf.org/html/rfc7231#section-4.3.1
⁶⁶https://tools.ietf.org/html/rfc7231#section-4.3.2
⁶⁷https://tools.ietf.org/html/rfc7231#section-4.3.3
⁶⁸https://tools.ietf.org/html/rfc7231#section-4.3.4
⁶⁹https://tools.ietf.org/html/rfc7231#section-4.3.5
⁷⁰https://tools.ietf.org/html/rfc7231#section-4.3.7
⁷¹Ibid § 6.1. Overview of Status Codes

https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7233
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7231#section-4.1
https://tools.ietf.org/html/rfc7231#section-4.3.1
https://tools.ietf.org/html/rfc7231#section-4.3.2
https://tools.ietf.org/html/rfc7231#section-4.3.3
https://tools.ietf.org/html/rfc7231#section-4.3.4
https://tools.ietf.org/html/rfc7231#section-4.3.5
https://tools.ietf.org/html/rfc7231#section-4.3.7
https://tools.ietf.org/html/rfc7231#section-6.1


Some context 19

Code Description Defined in…
200 OK Section 6.3.1⁷²
201 Created Section 6.3.2⁷³
204 No Content Section 6.3.5⁷⁴
301 Moved Permanently Section 6.4.2⁷⁵
302 Found Section 6.4.3⁷⁶
303 See Other Section 6.4.4⁷⁷
307 Temporary Redirect Section 6.4.7⁷⁸
400 Bad Request Section 6.5.1⁷⁹
401 Unauthorized Section 3.1 of RFC7235⁸⁰
403 Forbidden Section 6.5.3⁸¹
404 Not Found Section 6.5.4⁸²
405 Method Not Allowed Section 6.5.5⁸³
415 Unsupported Media Type Section 6.5.13⁸⁴
500 Internal Server Error Section 6.6.1⁸⁵

The protocol defines the mechanics of the conversation between the client and the server. You are
free to design your application in a way that makes sense, provided you are operating within these
guidelines

For example, if the same content is sent via POST multiple times, you can return a 201 created
response and store a new copy with each invocation. Alternatively, you can do that the first time
then, for each subsequent invocation, send a 303 see other response with the location of the original
resource. Similarly, if the client sends a PUT with an ID in the URL that doesn’t exist, you are free
to create it as if a POST was sent or reject it with a 404 not found error.

The key here is to be consistent and document your APIs using the OpenAPI Specification⁸⁶ or
another standard format.

⁷²https://tools.ietf.org/html/rfc7231#section-6.3.1
⁷³https://tools.ietf.org/html/rfc7231#section-6.3.2
⁷⁴https://tools.ietf.org/html/rfc7231#section-6.3.5
⁷⁵https://tools.ietf.org/html/rfc7231#section-6.4.2
⁷⁶https://tools.ietf.org/html/rfc7231#section-6.4.3
⁷⁷https://tools.ietf.org/html/rfc7231#section-6.4.4
⁷⁸https://tools.ietf.org/html/rfc7231#section-6.4.7
⁷⁹https://tools.ietf.org/html/rfc7231#section-6.5.1
⁸⁰https://tools.ietf.org/html/rfc7235#section-3.1
⁸¹https://tools.ietf.org/html/rfc7231#section-6.5.3
⁸²https://tools.ietf.org/html/rfc7231#section-6.5.4
⁸³https://tools.ietf.org/html/rfc7231#section-6.5.5
⁸⁴https://tools.ietf.org/html/rfc7231#section-6.5.13
⁸⁵https://tools.ietf.org/html/rfc7231#section-6.6.1
⁸⁶https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#openapi-specification

https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.3.2
https://tools.ietf.org/html/rfc7231#section-6.3.5
https://tools.ietf.org/html/rfc7231#section-6.4.2
https://tools.ietf.org/html/rfc7231#section-6.4.3
https://tools.ietf.org/html/rfc7231#section-6.4.4
https://tools.ietf.org/html/rfc7231#section-6.4.7
https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7231#section-6.5.3
https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc7231#section-6.5.5
https://tools.ietf.org/html/rfc7231#section-6.5.13
https://tools.ietf.org/html/rfc7231#section-6.6.1
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#openapi-specification
https://tools.ietf.org/html/rfc7231#section-6.3.1
https://tools.ietf.org/html/rfc7231#section-6.3.2
https://tools.ietf.org/html/rfc7231#section-6.3.5
https://tools.ietf.org/html/rfc7231#section-6.4.2
https://tools.ietf.org/html/rfc7231#section-6.4.3
https://tools.ietf.org/html/rfc7231#section-6.4.4
https://tools.ietf.org/html/rfc7231#section-6.4.7
https://tools.ietf.org/html/rfc7231#section-6.5.1
https://tools.ietf.org/html/rfc7235#section-3.1
https://tools.ietf.org/html/rfc7231#section-6.5.3
https://tools.ietf.org/html/rfc7231#section-6.5.4
https://tools.ietf.org/html/rfc7231#section-6.5.5
https://tools.ietf.org/html/rfc7231#section-6.5.13
https://tools.ietf.org/html/rfc7231#section-6.6.1
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.3.md#openapi-specification


Our first application programming
interface (API)
Now that we understand key concepts of web services let’s get back to the fun! Over the next few
chapters, we will build a “CRUD” (create, read, update, and delete) API for postings in our food blog
using a test-driven development approach.

The OpenAPI Specification

Throughout this book, I will express API requirements using the OpenAPI specification⁸⁷. Quoting
from their documentation:⁸⁸

The OpenAPI Specification is a community-driven open specification within the Ope-
nAPI Initiative, a Linux Foundation Collaborative Project.

The OpenAPI Specification (OAS) defines a standard, programming language-agnostic
interface description for RESTAPIs, which allows both humans and computers to discover
and understand the capabilities of a service without requiring access to source code,
additional documentation, or inspection of network traffic. When properly defined via
OpenAPI, a consumer can understand and interact with the remote servicewith aminimal
amount of implementation logic. Similar to what interface descriptions have done for
lower-level programming, the OpenAPI Specification removes guesswork in calling a
service.

After we complete this chapter, our API will match this specification:

1 openapi: 3.0.1

2 info:

3 title: "spring-web-essentials-blog-api"

4 version: "0.1.0"

5 description:

6 Initial specification for the food blog example Application

7 Programming Interface (API) in the Spring Web Development

8 Essentials book.

9

⁸⁷https://github.com/OAI/OpenAPI-Specification/
⁸⁸The OpenAPI Specification

https://github.com/OAI/OpenAPI-Specification/
https://github.com/OAI/OpenAPI-Specification/
https://github.com/OAI/OpenAPI-Specification/#the-openapi-specification


Our first application programming interface (API) 21

10 paths:

11 /api/articles:

12 post:

13 summary: Post a new blog article

14 responses:

15 '201':

16 description: The blog post was created successfully

17 headers:

18 Location:

19 description: The location of the newly created blog post

20 schema:

21 type: string

22 content: {}

From this spec above, our API supports one method, POST, at path /api/articles. It always returns
a 201, created status with one header, Location, which has a valid URL for the newly created blog
post. Finally, our method returns no content.

You can view a more interactive version on SwaggerHub⁸⁹

Quick tip before we get started

Importing classes is a real pain. The best way to spend less time doing so is to have IntelliJ do it
automatically where there is only one possible match. I also like to have imports optimized on the
fly, so I don’t have to worry about unused imports.

To get this same behavior on your machine, open the settings dialog, and check the options shown
below, then click “OK.”

⁸⁹https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.1.0

https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.1.0
https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.1.0


Our first application programming interface (API) 22

Enabling auto-add imports in project settings

Create a new blog posting

From the RFC 7231 specification:⁹⁰

If one or more resources has been created on the origin server as a result of successfully
processing a POST request, the origin server SHOULD send a 201 (Created) response
containing a Location header field that provides an identifier for the primary resource
created (Section 7.1.2) and a representation that describes the status of the request while
referring to the new resource(s).

I like to start simple and iteratively add complexity. Doing things one step at a time means when
something stops working, I only have one thing to debug. Unit tests help me get going with the least
amount of work. In this case, the spec calls for us to return:

⁹⁰RFC 7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content § 4.3.3 POST

https://tools.ietf.org/html/rfc7231#section-4.3.3


Our first application programming interface (API) 23

1. a 201 created status
2. a Location header with the URL of the newly created resource

Create blog posting test

1. In the Project pane, under src/test/java, right-click on com.spankinfresh.blog

2. Choose New > Java Class
3. Enter api.BlogPostControllerTests as the class name
4. Choose “Add” to add our new class to version control
5. Decorate the class with @SpringBootTest and @AutoConfigureMockMvc

6. Add a RESOURCE_URI constant with a value of “/api/articles”
7. Add the test method shown below

Your class should look like this:

1 package com.spankinfresh.blog.api;

2

3 import org.junit.jupiter.api.DisplayName;

4 import org.junit.jupiter.api.Test;

5 import org.springframework.beans.factory.annotation.Autowired;

6 import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;

7 import org.springframework.boot.test.context.SpringBootTest;

8 import org.springframework.test.web.servlet.MockMvc;

9 import static

10 org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;

11 import static

12 org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

13

14 @SpringBootTest

15 @AutoConfigureMockMvc

16 public class BlogPostControllerTests {

17

18 private static final String RESOURCE_URI = "/api/articles";

19

20 @Test

21 @DisplayName("T01 - Post returns status of CREATED")

22 public void test01(@Autowired MockMvc mockMvc)

23 throws Exception {

24 mockMvc.perform(post(RESOURCE_URI))

25 .andExpect(status().isCreated());

26 }

27 }



Our first application programming interface (API) 24

Our test interacts with a web server, but Spring doesn’t start one by default with @SpringBootTests.
Annotating the test class with @AutoConfigureMockMvc provides a mock web server that we pass to
each test method by way of the MockMvc parameter allowing us to perform operations against the
API under test.

In the example above, we perform a POST to our resource URI and expect it returns a status
of created. Section 25.3.5. Testing with a mock environment⁹¹ of the Spring Boot reference has
additional details and examples.

The MocMVC parameter is annotated with @Autowired⁹² which tells Spring to locate a bean of a
matching type and automatically provide an instance of it. You can read more about how this works
in the Spring documentation, section 1.9.2. Using @Autowired⁹³.

@DisplayName is new with JUnit 5. Without this annotation, the method name shows up in the test
output. Good programmers used verbose method names to convey the purpose of the test. Now, we
can simply write it clearly in the annotation, making it much easier to read. I typically number the
methods and include them in the display text for a faster association.

Run the test and verify the result

1. From the project pane, right click BlogPostControllerTests

2. Choose “Run BlogPostControllerTests”
3. Verify the test fails with the following error:

java.lang.AssertionError: Status expected:<201> but was:<404>

Expected :201

Actual :404

Note you might have to scroll through the test output to find the text above.

Get our test to pass

It should come as no surprise that the server returned a 404 not found error. We haven’t created a
controller and method to handle the request, so let’s fix that now.

1. In the Project pane, under src/main/java, right-click on com.spankinfresh.blog

2. Choose New > Java Class
3. Enter api.BlogPostController as the class name
4. Choose “Add” to add our new class to version control
5. Decorate the class with @RestController and @RequestMapping("/api/articles")

6. Add the method shown below, decorated with @PostMapping

Your class should look like this:
⁹¹https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing-spring-boot-

applications-testing-with-mock-environment
⁹²https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
⁹³https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-autowired-annotation

https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing-spring-boot-applications-testing-with-mock-environment
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-autowired-annotation
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing-spring-boot-applications-testing-with-mock-environment
https://docs.spring.io/spring-boot/docs/2.2.4.RELEASE/reference/html/spring-boot-features.html#boot-features-testing-spring-boot-applications-testing-with-mock-environment
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/annotation/Autowired.html
https://docs.spring.io/spring/docs/5.2.3.RELEASE/spring-framework-reference/core.html#beans-autowired-annotation


Our first application programming interface (API) 25

1 package com.spankinfresh.blog.api;

2

3 import org.springframework.http.HttpStatus;

4 import org.springframework.http.ResponseEntity;

5 import org.springframework.web.bind.annotation.PostMapping;

6 import org.springframework.web.bind.annotation.RequestMapping;

7 import org.springframework.web.bind.annotation.RestController;

8

9 @RestController

10 @RequestMapping("/api/articles")

11 public class BlogPostController {

12

13 @PostMapping

14 public ResponseEntity createBlogEntry () {

15 return new ResponseEntity(HttpStatus.CREATED);

16 }

17

18 }

Decorating this class with @RestController⁹⁴ is another convenience annotation. Instead, we could
have used @Controller⁹⁵ and @ResponseBody⁹⁶. Either way, the result is the same. More on model-
view-controller later but classes with the @Controller designation handle web requests. They
control both old school server-side web sites, returning a model and view, or, as indicated by the
@ResponseBody designation, a raw REST API response.

We annotated the class with @RequestMapping("/api/articles") so Spring maps web requests for
any HTTPmethod to this controller. Also, since the /api/articlesURI fragment is on the class level
annotation, it is common to all request handlers in the controller. URI fragments or path variables
in method mappings are appended to the common prefix.

Our createBlogEntry method is decorated with@PostMapping⁹⁷ meaning it handles POST requests.
As we will see later, there is also @GetMapping⁹⁸, @PutMapping⁹⁹, @DeleteMapping¹⁰⁰, and
@PatchMapping¹⁰¹ annotations for each of those HTTP methods.

@ResponseEntity¹⁰² extends HttpEntity¹⁰³ and adds a HttpStatus¹⁰⁴ code. As such, we can return a
full HTTP response, including headers, body, and a status code. Our method above only returns a
status code, but that will change in the next section.

⁹⁴https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
⁹⁵https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
⁹⁶https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/ResponseBody.html
⁹⁷https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
⁹⁸https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html
⁹⁹https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PutMapping.html
¹⁰⁰https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/DeleteMapping.html
¹⁰¹https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PatchMapping.html
¹⁰²https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html
¹⁰³https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpEntity.html
¹⁰⁴https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/ResponseBody.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PutMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/DeleteMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PatchMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpEntity.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RestController.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/stereotype/Controller.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/ResponseBody.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PostMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/GetMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PutMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/DeleteMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/PatchMapping.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/ResponseEntity.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpEntity.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/http/HttpStatus.html


Our first application programming interface (API) 26

Run the test and verify it now succeeds

1. From the project pane, right-click BlogPostControllerTests

2. Choose “Run BlogPostControllerTests”
3. Verify the test succeeds, as shown below:

View of our first API test passing

Testing with Postman

Unit testing is fantastic, but did you know we now have a fully functioning REST API application?
Let’s fire up our app and use Postman¹⁰⁵ to test it.

1. From the Project pane, expand src/main/java/com.spankinfresh.blog if it’s not already open.
2. Right-click on BlogApplication and choose “Run BlogApplication”. After a few seconds, you

should see in the Run pane the message, Started BlogApplication in x.xxx seconds.
3. Open Postman. If this is the first time you open the app, it will ask you to create an account.

Doing so is optional. If youwould rather not, close the dialog that appears or click, “Skip signing
in and take me straight to the app” from the bottom center of the splash screen that appears
the first time you run the app.

4. If you get the “Create New” dialog, click on “Request” otherwise choose File > New… then
choose “Request” from the options dialog.

5. Enter post works for the request name.
6. Towards the bottom, click “+ Create Collection” and enter Food Blog and press the checkmark

to the right.
7. Click “Save to Food Blog” to save and open your new request in the main area of the workspace.
8. Change theHTTPmethod from “GET” to “POST” and, to the right, enter localhost:8080/api/articles

in the URL address field. It should look like this:
¹⁰⁵https://www.postman.com/

https://www.postman.com/
https://www.postman.com/


Our first application programming interface (API) 27

Postman request prior to submission

9. Press the “Send” button to send the request. After a brief moment, the API call should return and
display a status of “201 Created” as shown below:



Our first application programming interface (API) 28

Postman request after submission

10. Click the “Save” button to save your changes.
11. Finally, back in IntelliJ, choose “Run” from the menu then “Stop ‘BlogApplication’”.

Note: as you make changes to your application, don’t forget to stop and restart it before testing your
next set of changes. While it’s possible to configure IntelliJ do automatically reload updated classes,
I have found it to be somewhat inconsistent and slow to reload.

Return a Location header

Now that we have our controller method returning a 201 created response let’s move onto the
location header.

Add a test for the location

We could update our initial test, but let create a new one so you can easily compare the two.



Our first application programming interface (API) 29

1 @Test

2 @DisplayName("T02 - Post returns Location header for new item")

3 public void test02(@Autowired MockMvc mockMvc) throws Exception {

4 MvcResult result =

5 mockMvc.perform(post(RESOURCE_URI)).andReturn();

6

7 MockHttpServletResponse mockResponse = result.getResponse();

8 assertEquals("http://localhost/api/articles/1",

9 mockResponse.getHeader("Location"));

10 }

In this new test, we chain a call to .andReturn() at the end of the mockMvc.perform() statement and
store the result in a new MvcResult variable. Calling getResponse() on the result gives us access to
the webserver response, including the headers.

In the last two lines, we use the static method org.junit.jupiter.api.Assertions.assertEquals

to compare the value of the location header to what we are expecting. Since we are not setting that
HTTP header in our controller, the test fails:

org.opentest4j.AssertionFailedError:

Expected :http://localhost/api/articles/1

Actual :null

Fix the location header test

Replace the BlogPostController createBlogEntry method with the code shown below:

1 @PostMapping

2 public ResponseEntity createBlogEntry () {

3 HttpHeaders headers = new HttpHeaders();

4 headers.add("Location", "http://localhost/api/articles/1");

5 return new ResponseEntity("", headers, HttpStatus.CREATED);

6 }

In the version above, we are adding a hard-coded location header and returning it in the Respon-
seEntity with an empty response body. When you go back and run your blog post controller tests,
both should pass.

You can also see the change in Postman. Rerun the BlogApplication and resubmit your POST
request. The result should be the same, but you will now have five headers and, when you click
on the response headers tab, you will see the new Location header:



Our first application programming interface (API) 30

Postman request after submission with location header

Accomplishments

Yes, I realize we hardcoded a return value to make the test pass and aren’t posting, let alone saving
anything. To create a posting for our food blog, we need to define what one is and how to represent
it. We also need a database to store the articles. Had we included these concerns right from the start,
it would have overcomplicated things.

Application development is like constructing a high-rise building. It must be done floor by floor.
Layering on too much too quickly increases the risk it will collapse under its weight. Now that the
footers are in place and the foundation laid, we are ready to make it fully functional, knowing we
have a running application that is ready to handle our REST API requests.



Adding an object model
Now that we have a working API, it’s time to add a representation for articles posted to our blog. By
creating a domain class, Spring can automatically convert it to and from JavaScript Object Notation
(JSON). In this chapter, we add the domain class then update our controller to extract it from the
request body and return a copy in the response.

Updated OpenAPI specification

The specification below describes what we will be building in this chapter:

1 openapi: 3.0.1

2 info:

3 title: "spring-web-essentials-blog-api"

4 version: "0.2.0"

5 description:

6 Specification for the food blog example Application

7 Programming Interface (API) in the Spring Web Development

8 Essentials book. This version includes the object model.

9 paths:

10 /api/articles:

11 post:

12 summary: Post a new blog article

13 requestBody:

14 description: New food blog article

15 required: true

16 content:

17 application/json:

18 schema:

19 $ref: '#/components/schemas/BlogPost'

20 responses:

21 '201':

22 description:

23 The blog post was created successfully and the

24 response body has a representation of the newly

25 saved article

26 headers:

27 Location:



Adding an object model 32

28 description:

29 The location of the newly created blog post

30 schema:

31 type: string

32 content:

33 application/json:

34 schema:

35 $ref: '#/components/schemas/BlogPost'

36 components:

37 schemas:

38 BlogPost:

39 type: object

40 description: Representation of an article posted to our blog

41 properties:

42 id:

43 type: integer

44 description: The article ID

45 default: 0

46 category:

47 type: string

48 description: The category group for this article

49 default: null

50 datePosted:

51 type: string

52 format: date-time

53 description: RFC 3339 formatted date the article was posted

54 default: null

55 title:

56 type: string

57 description: Blog post title

58 default: null

59 content:

60 type: string

61 description: Markdown blog post content

62 default: null

The SwaggerHub version is available here¹⁰⁶. It has a new schema for BlogPost, which is passed as
application/json in the requestBody to the post method. When our post method responds with
a 201 status, the content returned is also an application/json representation of the newly saved
BlogPost.

¹⁰⁶https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.2.0

https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.2.0
https://app.swaggerhub.com/apis/DataDaddy/spring-web_essentials_blog_api/0.2.0


Adding an object model 33

Create a blog post domain class

1. From the Project pane, right-click on com.spankinfresh.blog under src/main/java then
choose New > Java Class.

2. Enter domain.BlogPost as the class name and, when prompted, click “Add” to add our new
class to version control.

3. Add the following properties to the class:

1 private long id;

2 private String category;

3 private Date datePosted;

4 private String title;

5 private String content;

4. Using theCode > Generate…, thenGetter and Setter, add getters and setters for the properties
above.

5. To make testing easier, add default and non-default constructors as shown below:

1 public BlogPost() { }

2

3 public BlogPost(long id, String category, Date datePosted,

4 String title, String content) {

5 this.id = id;

6 this.category = category;

7 this.datePosted = datePosted;

8 this.title = title;

9 this.content = content;

10 }

Incorporate the BlogPost class into our API

Update the test to pass an instance

One of the dependencies Spring Boot included is jackson-databind¹⁰⁷. Spring uses it internally to
marshall and unmarshal objects like BlogPost, represented as JSON in transit. This conversion is
automatic in our controllers. We can use the library in our tests to avoid having to create hand-
coded, long, hard to read JSON strings.

¹⁰⁷https://fasterxml.github.io/jackson-databind/

https://fasterxml.github.io/jackson-databind/
https://fasterxml.github.io/jackson-databind/


Adding an object model 34

1. Back in BlogPostControllerTests, add an instance variable for the jackson-databind object
mapper¹⁰⁸:

1 private final ObjectMapper mapper = new ObjectMapper();

2. Since most test methods will need an instance of BlogPost for testing, let us create a reusable
constant:

1 private static final BlogPost testPosting =

2 new BlogPost(1L, "category", null, "title", "content");

3. Replace the two existing tests with the one shown below. It combines the two previous tests
plus sends a representation of the test blog post and checks that one is returned:

1 @Test

2 @DisplayName("T01 - POST accepts and returns blog post representation")

3 public void postCreatesNewBlogEntry_Test(@Autowired MockMvc mockMvc)

4 throws Exception {

5 MvcResult result = mockMvc.perform(post(RESOURCE_URI)

6 .contentType(MediaType.APPLICATION_JSON)

7 .content(mapper.writeValueAsString(testPosting)))

8 .andExpect(status().isCreated())

9 .andExpect(jsonPath("$.id").value(1L))

10 .andExpect(jsonPath("$.title").value(testPosting.getTitle()))

11 .andExpect(jsonPath("$.category").value(testPosting.getCategory()))

12 .andExpect(jsonPath("$.content").value(testPosting.getContent()))

13 .andReturn();

14 MockHttpServletResponse mockResponse = result.getResponse();

15 assertEquals("http://localhost/api/articles/1",

16 mockResponse.getHeader("Location"));

17 }

4. When given the choice ofwhich jsonPath class to import, choose, org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath.
5. Finally, run test and verify it fails with the following message:

java.lang.AssertionError: No value at JSON path "$.id"

Before we get our test passing, let’s compare it to our previous tests. The first difference is the new
method calls chained to post() when we call mockMvc.perform(). The call to contentType() sets
the Content-type header to application/json. The second is the call to .content() where we use

¹⁰⁸https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html

https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html
https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html
https://fasterxml.github.io/jackson-databind/javadoc/2.7/com/fasterxml/jackson/databind/ObjectMapper.html


Adding an object model 35

our jackson-databind object mapper to marshall the testPosting constant, created earlier, to JSON.
It sets the request body with the return value from mapper.writeValueAsString(testPosting).

If you were to print it out, the POSTed request body would look like this:

1 {

2 "id": 1,

3 "category": "Some category",

4 "title": "Ab fab title",

5 "content": "Amazing content"

6 }

The final difference is the additional calls to .andExpect() where we use MockMvcResultMatch-
ers¹⁰⁹, specifically the JsonPathResultMatchers¹¹⁰, allowing us to examine JSON values in the
response body using JsonPath¹¹¹ expressions.

Our test expects the response body to be the same as the request body. In the next chapter, we will
start saving postings to the database, and it will assign the ID. At that time, we will update our test
to omit the ID in the request and to verify a non-zero ID value in the response.

Receive and return the blog posting

The changes to the controller method are pretty straightforward. We need to add a blogPost

parameter for the @RequestBody¹¹². Next, we need to replace the empty string we were returning
with the parameter passed. Finally, we should practice good type safety hygiene by specifying the
BlogPost type for the parameterized ResponseEntity class.

Below is the updated code:

1 @PostMapping

2 public ResponseEntity<BlogPost> createBlogEntry(

3 @RequestBody BlogPost blogPost) {

4 HttpHeaders headers = new HttpHeaders();

5 headers.add("Location", "http://localhost/api/articles/1");

6 return new ResponseEntity<>(blogPost, headers,

7 HttpStatus.CREATED);

8 }

After making these code changes, rerun the unit test in BlogPostControllerTests and make sure it
passes. If you kept the previous unit tests, they would fail because they aren’t sending a blog post

¹⁰⁹https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/
MockMvcResultMatchers.html

¹¹⁰https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/
JsonPathResultMatchers.html

¹¹¹https://github.com/json-path/JsonPath
¹¹²https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestBody.html

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/MockMvcResultMatchers.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/MockMvcResultMatchers.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/JsonPathResultMatchers.html
https://github.com/json-path/JsonPath
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestBody.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/MockMvcResultMatchers.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/MockMvcResultMatchers.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/JsonPathResultMatchers.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/test/web/servlet/result/JsonPathResultMatchers.html
https://github.com/json-path/JsonPath
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/bind/annotation/RequestBody.html


Adding an object model 36

in the request body. Either remove them or update them also to set the content type and content
values like we did for our new test.

Checking our work with Postman

1. Right-click on BlogApplication then choose Run ‘BlogApplication’
2. Once the application is running, start Postman choosing the post works request in the Food

Blog collection we created earlier.
3. Click on the “Body” tab under the URL address field and click on the “raw” radio button.
4. Copy or type in the JSON shown in the previous section into the request body field.
5. Change the content type dropdown to the right of GraphQL from Text to JSON. The request

should look like this:

Updated POST before sending

Updated POST before sending

6. Click “Send”. After a few moments, you should get a 201 created status with the JSON blog
post representation shown in the response body:

Updated POST after sending



Adding an object model 37

Updated POST after sending

Accomplishments

In this chapter, we created a domain class to represent a posting on our food blog. We updated the
POST method to receive and return it. In the next chapter, we will start saving posts to the database
and replace the hardcoded location header ID value with the one assigned by the database.



Adding a database
This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Add the project dependencies:

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Convert BlogPost into an @Entity:

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Create a Spring JPA repository:

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Using our new JPA repository

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Update our test to check for auto-incrementing primary keys

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Saving blog posts to the database

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Adding a database 39

Have the controller automatically set the datePosted

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Write the test

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Set the date in the controller:

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Test your changes with Postman

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Accomplishments

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Testing with mocks
This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Create a second BlogPostControllerTests class

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Configure our new class for mocking

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Using our mock bean

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Accomplishments

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Property validation
This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Add bean validation constraints to BlogPost

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Test that validation errors result in a bad request
status

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Update the controller to run validation

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Testing with Postman

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Customizing the validation errors response

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Write a test for our custom validation

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Property validation 42

Write a custom validation exception handler

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Test your changes

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Accomplishments

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Putting the RUD in CRUD
This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Test utilities

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Get all articles

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Write the tests to get all articles

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Add a controller method to get all blog articles

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Checking to make sure a populated list also works

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Testing with PostMan

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Putting the RUD in CRUD 44

Get an article by ID

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Testing the 200 and 404 responses

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Add the controller method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Update an existing article

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Tests for 204 and 404

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Getting our test to pass

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Testing our 400 errors

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Testing the 409 status

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials


Putting the RUD in CRUD 45

Delete an existing article

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Create our tests

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Implement the controller delete method

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

Accomplishments:

This content is not available in the sample book. The book can be purchased on Leanpub at http:
//leanpub.com/springwebessentials.

http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials
http://leanpub.com/springwebessentials

	Table of Contents
	Introduction
	Foreword
	Who should read this book?
	What you will need
	About the author
	Acknowledgements

	Part One: Web Services For The Modern Age
	Getting started
	Create a new Maven project using Spring Initializr
	Extract and open the project
	Make sure you can run your new application
	A closer look at the Maven Project Object Model (POM) file
	A closer look at the main Java application class
	A closer look at the JUnit test class
	Git committed!
	Accomplishments

	Some context
	Web services
	Representational State Transfer (REST)
	More about HTTP

	Our first application programming interface (API)
	The OpenAPI Specification
	Create a new blog posting
	Return a Location header
	Accomplishments

	Adding an object model
	Updated OpenAPI specification
	Create a blog post domain class
	Incorporate the BlogPost class into our API
	Accomplishments

	Adding a database
	Add the project dependencies:
	Convert BlogPost into an @Entity:
	Create a Spring JPA repository:
	Using our new JPA repository
	Have the controller automatically set the datePosted
	Test your changes with Postman
	Accomplishments

	Testing with mocks
	Create a second BlogPostControllerTests class
	Configure our new class for mocking
	Using our mock bean
	Accomplishments

	Property validation
	Add bean validation constraints to BlogPost
	Test that validation errors result in a bad request status
	Update the controller to run validation
	Testing with Postman
	Customizing the validation errors response
	Accomplishments

	Putting the RUD in CRUD
	Test utilities
	Get all articles
	Get an article by ID
	Update an existing article
	Delete an existing article
	Accomplishments:



